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Abstract

Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN)
and ice nuclei (IN) and affect microphysical properties of clouds. Increasing
aerosol number concentrations is hypothesized to retard the cloud droplet colli-
sion/coalescence and the riming in mixed-phase clouds, thereby decreasing orographic5

precipitation.
This study presents results from a model intercomparison of 2-D simulations of

aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds.
The sensitivity of orographic precipitation to changes in the aerosol number con-
centrations is analyzed and compared for various dynamical and thermodynamical10

situations. Furthermore, the sensitivities of microphysical processes such as colli-
sion/coalescence, aggregation and riming to changes in the aerosol number concen-
trations are evaluated and compared.

The participating models are the Consortium for Small-Scale Modeling’s (COSMO)
model with bulk-microphysics, the Weather Research and Forecasting (WRF) model15

with bin-microphysics and the University of Wisconsin modeling system (UWNMS) with
a spectral ice-habit prediction microphysics scheme. All models are operated on a
cloud-resolving scale with 2 km horizontal grid spacing.

The results of the model intercomparison suggest that the sensitivity of orographic
precipitation to aerosol modifications varies greatly from case to case and from model20

to model. Neither a precipitation decrease nor a precipitation increase is found robustly
in all simulations. Qualitative robust results can only be found for a subset of the
simulations but even then quantitative agreement is scarce. Estimates of the second
indirect aerosol effect on orographic precipitation are found to range from –19% to 0%
depending on the simulated case and the model.25

Similarly, riming is shown to decrease in some cases and models whereas it in-
creases in others which implies that a decrease in riming with increasing aerosol load
is not a robust result. Furthermore, it is found that neither a decrease in cloud droplet
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coalescence nor a decrease in riming necessarily implies a decrease in precipitation
due to compensation effects by other microphysical pathways.

The simulations suggest that mixed-phase conditions play an important role in re-
ducing the overall susceptibility of clouds and precipitation with respect to changes in
the aerosols number concentrations. As a consequence the indirect aerosol effect on5

precipitation is suggested to be less pronounced or even inverted in regions with high
terrain (e.g., the Alps or Rocky Mountains) or in regions where mixed-phase micro-
physics climatologically plays an important role for orographic precipitation.

1 Introduction

Orographic clouds form as moist air impinges on mountain ranges thereby potentially10

forming orographic precipitation which is essential for landscape formation, agriculture
and the hydrology of watersheds in many regions of the world (e.g., Roe, 2005). Un-
derstanding the various dynamical processes leading to orographic precipitation have
been objectives of several field experiments such as the Mesoscale Alpine Programme
(MAP, Bougeault et al., 2001) and the Improvement of Microphysical Parameterization15

Through Observational Verification Experiment (IMPROVE-2, Stoelinga et al., 2003).
However, the complexity of mixed-phase microphysical processes acting in orographic
clouds and the sensitivity of orographic precipitation to changes in microphysics are
not fully understood yet (e.g., Rotunno and Houze, 2007) and remain challenging to
represent in numerical models of weather and climate on various scales.20

One of the open questions regarding microphysical effects on orographic clouds is
weather aerosol particles can significantly influence the amount and distribution of pre-
cipitation from these clouds. Orographic precipitation is hypothesized to be susceptible
to aerosols because the time available to form precipitable hydrometeors in rising air
parcels is constrained by the flow over the mountain. Increasing the aerosol num-25

ber concentration is observed to lead to a shift of the cloud droplet spectrum towards
smaller sizes (e.g., Twomey et al., 1984; Lowenthal et al., 2004) and, thus, retards the
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onset of the collision/coalescence process. Microphysical observations in mixed-phase
clouds also suggest a decrease in the snowfall rate with increasing aerosol number
concentration due to a reduced efficacy of the riming process implied by smaller cloud
droplets (Borys et al., 2000, 2003). Both effects together may modulate the amount
and distribution of mixed-phase precipitation over mountainous terrain.5

However, several in-situ and airborne observations in orographic clouds show that,
besides their ability to act as cloud condensation nuclei (CCN), aerosols are impor-
tant for the initiation of ice in orographic clouds by heterogeneous ice nucleation (Field
et al., 2001; Targino et al., 2006; Mertes et al., 2007; Cozic et al., 2008). Measurements
from the Cloud and Aerosol Characterization Experiment (CLACE, Choularton et al.,10

2008) indicate the potential of aerosols to influence the partitioning between the liquid
and the ice-phase in mixed-phase orographic clouds thereby controlling the microphys-
ical growth regime of hydrometeors (Verheggen et al., 2007). The ability of aerosols to
serve as ice nuclei (IN) in various heterogeneous nucleation modes (see Vali, 1985) de-
pends on environmental factors such as temperature and ice-supersaturation but also15

on a variety of aerosol properties like lattice structure, surface defects, chemical com-
position, etc. (Pruppacher and Klett, 1997; Baker and Peter, 2008; Hegg and Baker,
2009; Kulkarni and Dobbie, 2010). Based on the results of laboratory experiments,
mineral dust and black carbon aerosols are deemed to be good ice nuclei (Roberts and
Hallett, 1968; Gorbunov et al., 2001). Ice residual measurements during several field20

campaigns corroborate the ability of dust (e.g., DeMott et al., 2004; Cziczo et al., 2004)
and black carbon aerosols (e.g., Mertes et al., 2007; Cozic et al., 2008) to act as IN
which for the latter one also suggests an anthropogenic impact of aerosols on clouds.
However, laboratory studies also indicate that the mixing/processing state of aerosols
can significantly alter the IN abilities which still is a matter of considerable debate. So25

far, it is found that coating of particles with sulfuric acid or organics increases the onset
supersaturation for heterogeneous nucleation in the deposition mode and lowers the
freezing temperatures in the immersion mode. This renders coated, processed or aged
substrates of black carbon or mineral dust less efficient for heterogeneous nucleation
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when compared with the uncoated samples (e.g., Möhler et al., 2005, 2008; Kanji and
Abbatt, 2006).

Statistical quantifications of aerosols affecting orographic precipitation based on
paired rain gauge data are so far controversial and partially contradicting (e.g., Gi-
vati and Rosenfeld, 2004; Jirak and Cotton, 2006; Alpert et al., 2008, amongst others).5

A particular difficulty arising in these studies is to separate the aerosol effect on pre-
cipitation from urban/heat island effects or other climatological changes (e.g., changes
in circulation patterns, synoptic changes) and it is argued that inferences from these
methods can also be misleading (Paldor, 2008; Muhlbauer, 2009). As a consequence,
estimates of the effects of aerosols on orographic precipitation from observations re-10

main inconclusive and uncertain (e.g., Denman et al., 2007; Levin and Cotton, 2009;
Khain, 2009) which in turn justifies the use of numerical models.

Early numerical simulations by Hobbs et al. (1973) show that the microphysical
growth regime by which hydrometeors develop in orographic clouds influences the
orographic precipitation distribution. Simulations of winter-time orographic clouds sug-15

gest that the amount of orographic precipitation is sensitive to the available CCN and
show decreasing precipitation for increasing CCN (Chaumerliac et al., 1987; Thompson
et al., 2004). Similarly, Lynn et al. (2007) find a decrease of orographic precipitation
if the background aerosol conditions change from maritime to continental. However,
Lynn et al. (2007) also report a sensitivity of the aerosol effect on orographic precipita-20

tion with respect to relative humidity. In a work on the classification of aerosol effects
on precipitation Khain et al. (2008) conclude that orographic precipitation is decreased
with increasing aerosol number if the environmental conditions at which orographic
clouds form are relatively dry. Muhlbauer and Lohmann (2008) find decreasing oro-
graphic precipitation with increasing aerosol number concentrations for warm-phase25

orographic clouds at relative humidities of 80% but the sensitivities crucially depend
on the geometry of the mountain and the dynamical flow regime with lower or even
reversed sensitivity for blocked flows.
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Nevertheless, it is not clear how aerosols can influence precipitation in mixed-phase
orographic clouds where the efficient formation of precipitable hydrometeors does not
hinge on the warm-phase collision/coalescence process alone. Indeed, Saleeby and
Cotton (2009) conduct simulations of winter-time orographic seeder-feeder clouds and
found that precipitation tends to be redistributed rather than suppressed even if the rim-5

ing efficiencies in these clouds are decreased. In addition, simulations of mixed-phase
orographic clouds by Muhlbauer and Lohmann (2009) suggest that the heterogeneous
freezing ability of aerosols (i.e., the heterogeneous freezing mode) can control the
sign and the magnitude of the aerosol effect on orographic precipitation. These re-
sults highlight the importance of the ice-phase for aerosol-cloud-precipitation interac-10

tion problems. Similarly, Zubler et al. (2010) find a reduction of orographic rainfall with
increasing aerosol number concentration but also a tendency towards compensation
or even increases in precipitation from snow and graupel at colder temperatures, thus,
emphasizing that the sign and magnitude of the aerosol effect on orographic precipita-
tion may strongly depend on the contribution from the ice-phase.15

However, microphysical sensitivity studies in the past also show large impacts and
variability of the results depending on the numerical approach followed in the models
to treat microphysical processes (e.g., Morrison and Grabowski, 2007; Li et al., 2009).
For example, bulk microphysical parameterisations typically rely on some assumed
form of hydrometeor size distributions which introduces additional uncertainties. In20

contrast, bin-resolving microphysical models explicitly calculate the particle size dis-
tributions without assumptions on the shape and slope parameter. Nevertheless, for
computing microphysical collection processes (i.e., coalescence, aggregration and rim-
ing) both modeling approaches rely on assumptions for the collection efficiencies which
are usually derived from laboratory experiments or numerical simulations (e.g., Khain25

et al., 2000).
Thus, the main goal of this paper is to analyze and inter-compare the sensitivities

of different microphysical processes in mixed-phase orographic clouds and orographic
precipitation to changes in the ambient aerosol conditions using several state-of-the-art
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numerical models and microphysical approaches. Special emphasis is placed on the
sensitivity of the riming process.

Thus, we address the following science questions:

– Is it possible to get qualitative robust estimates of the sensitivity of orographic
precipitation to changing aerosol conditions for dynamically idealised conditions?5

– Do increases in the aerosol number concentration affect the cloud droplet coales-
cence and the riming process in mixed-phase orographic clouds?

– Do reductions in coalescence and riming from increases in aerosol number con-
centrations imply a reduction of precipitation from mixed-phase orographic clouds
or are there compensating effects such as enhanced aggregation?10

In order to reduce the complexity of the problem, the simulations are performed within
an idealised setup of a 2-D flow over a mountain introduced at the Seventh WMO
International Cloud Modeling Workshop (Morrison et al., 2009).

The paper is structured as follows: the participating models and microphysical pa-
rameterisations are introduced in Sect. 2. The design and the setup of the model15

intercomparison is outlined in Sect. 3. In Sect. 4 the results of the different model-
ing approaches are presented. A discussion of the key findings and conclusions are
presented in Sect. 5.

2 Model descriptions

The model-intercomparison is comprised of three participating models namely the Con-20

sortium for Small-Scale Modeling’s (COSMO) model with coupled bulk two-moment
aerosol-cloud microphysics COSMO, the Weather Research and Forecasting (WRF)
model with bin microphysics WRF and the University of Wisconsin modeling system
(UWNMS) with SHIPS microphysics UWNMS. Details of the microphysical parameteri-
sations of each model are given in Table 1.25

10494

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2.1 COSMO

The COSMO model is a non-hydrostatic, fully compressible limited-area mesoscale
weather prediction model (http://www.cosmo-model.org, Doms and Schättler, 2002;
Steppeler et al., 2003). The elastic equations are solved in a split-explicit time-splitting
approach (Wicker and Skamarock, 2002) with a two time-level total variation diminish-5

ing (TVD) third order Runge-Kutta scheme in combination with a fifth order horizontal
advection scheme. All moisture variables and aerosols are advected by a fourth order
positive definite advection scheme after Bott (1989). A Smooth Level Vertical (SLEVE)
coordinate system (Schär et al., 2002) is used in the vertical and a Rayleigh damping
layer is introduced in the upper parts of the computational domain to minimize reflec-10

tions of vertically propagating gravity waves from the rigid upper model boundary.
Coupled aerosol- and cloud-microphysical processes are parameterized in a two-

moment approach for five hydrometeor species (i.e., cloud droplets, rain, ice crystals,
snow, graupel) and aerosols with various chemical compositions (i.e., sulfate, black car-
bon, organic carbon, sea salt, dust). The warm-phase microphysical processes of the15

scheme include the nucleation of cloud droplets, condensation/evaporation of cloud
droplets, autoconversion of cloud droplets to rain (i.e., the collision of cloud droplets
leading to rain drops), accretion of cloud droplets by rain (i.e., the collection of cloud
droplets by rain drops), self-collection of cloud-droplets and rain, evaporation of rain
and the break-up of large rain drops. In the present version of the model the aerosol20

activation is treated by following the κ-Köhler theory of Petters and Kreidenweis (2007).
The ice-phase processes include heterogeneous nucleation, secondary ice nucleation,
freezing, melting, vapor deposition, sublimation, riming, aggregation, collection and
conversion to graupel (see Table 1 for details). For details of the microphysics parame-
terisation we refer the interested reader to Seifert and Beheng (2006), Muhlbauer and25

Lohmann (2008) and references therein.
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2.2 WRF

The Advanced Research WRF model version three (Klemp et al., 2007; Skamarock
and Klemp, 2008) is used with the new upper gravity wave absorbing layer accord-
ing to Klemp et al. (2008). A detailed bin microphysics scheme is implemented in
WRF and described in Geresdi (1998), Rasmussen et al. (2002) and Geresdi and5

Rasmussen (2005). The bin schemes use the multi-moment conservation method
(Tzivion et al., 1987; Reisin et al., 1996) to insure the conservation of mass and num-
ber concentrations over 36 bins. Evolution equations are solved explicitly for the size
distributions of cloud droplets, rain, ice crystals, snow and graupel (see Table 1 for
details). The warm-phase microphysical processes include the activation of aerosols10

to cloud droplets, diffusional growth of drops (i.e., condensation/evaporation), colli-
sion/coalescence of drops (i.e., autoconversion, accretion, and self-collection) and
break-up of drops. Contrary to Rasmussen et al. (2002), aerosol activation and cloud
droplet nucleation is treated here by calculating the supersaturation and critical diame-
ter according to Köhler theory (Pruppacher and Klett, 1997; Khain et al., 2000). Hence,15

40 more bins are added to the microphysics scheme to resolve the aerosol size distri-
bution in the range 0.013–105 µm and the diffusional growth of the wetted aerosols is
treated by the method described in Kogan (1991) and Teller and Levin (2006).

Ice-phase microphysical processes include diffusional growth of ice crystals, snow
and graupel (i.e., deposition/sublimation), aggregation, riming and melting. Heteroge-20

neous nucleation of ice crystals is considered through freezing of supercooled droplets
(immersion freezing, contact freezing) and due to deposition and condensation nucle-
ation. Secondary ice formation includes the Hallett-Mossop ice multiplication process.

2.3 UWNMS

The University of Wisconsin non-hydrostatic modeling system (UWNMS) is a regional25

mesoscale model that is designed for high resolution cloud resolving simulations em-
ploying a variable stepped topography (VST) coordinate system (Tripoli, 1992; Tripoli
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and Smith, 2009). The dynamical core of UWNMS is formulated to conserve vorticity,
kinetic energy, and enstrophy with a quasi-compressible closure. A numerical filter is
employed to control nonlinear instabilities and spurious numerical noise. For the ad-
vection of scalar variables a positive definite nonlinear piecewise parabolic method is
used.5

Cloud-microphysical processes are predicted with the Advanced Microphysics Pre-
diction System (AMPS, Hashino and Tripoli, 2007, 2008, 2009a,b) which simulates
the detailed spectra of liquid, ice and aerosol particles. The liquid parameterisation
is called SLiPS (Spectral Liquid Prediction System) which is a two-moment mass bin
model. The size spectrum ranges from 0.1 µm to 0.5 mm radius with 30 bins employed.10

The ice phase is parameterized in SHIPS which simulates 14 particle property vari-
ables over 20 two-moment mass bins. The main aim of SHIPS is to keep track of the
growth history of ice particles and evolve the particles properties explicitly in the Eu-
lerian dynamics model. Given the particle property variables, the average habit and
type of ice particles is diagnosed for each mass bin. Hence, no categorization of ice15

particles is necessary. The aerosols are handled by SAPS (Spectral Aerosol Predic-
tion System) which simulates two moments of three lognormal distributions to describe
Aitken, accumulation, and coarse modes of CCN and one monodisperse distribution of
IN.

The current version of SHIPS includes heterogeneous nucleation, condensa-20

tion/evaporation, deposition/sublimation, coalescence, aggregation, riming, freezing,
melting as well as the break-up of rain drops and large snow flakes (see Table 1 for
details). The activation of aerosols is treated according to Köhler theory.
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3 Design of the model intercomparison

3.1 Model setup

All models use a 2-D computational domain with 401 gridpoints in the horizontal and
60 vertical levels. The model grid spacing is 2 km. In order to make the models dy-
namically as comparable as possible, radiation, turbulence and convection parame-5

terisations are switched off. Furthermore, a free-slip condition is imposed at the lower
model boundary. Heterogeneous ice nucleation is treated by following the Meyers et al.
(1992) formulation for deposition/condensation nucleation in all models.

3.2 Initial conditions

All experiments consider the development of an isolated orographic cloud and oro-10

graphic precipitation for a 2-D mountain flow.1 A series of sensitivity experiments are
conducted by changing aerosol initial conditions, temperature profiles and mountain
heights as summarised in Table 2. The initial vertical profiles of temperature and
dew-point temperature are shown in Fig. 1 and are given analytically by prescribing
a sea-level temperature TSL, sea-level pressure pSL and dry Brunt-Väisälä frequency15

Nd following Clark and Farley (1984). The sea-level temperature is varied between
TSL=273 K and TSL=280 K to generate two different thermodynamical conditions. The
vertical profile of the relative humidity is given by

RH(z)=a+
b−a

1+exp
[
−c(z−z0)

] , (1)

with the parameters a=0.95, b=0.03, c=0.0015 m−1, z0=6000 m and 0≤RH≤1 and20

a sea-level relative humidity of RHSL=95%. The wind speed is U=15 m s−1. It is

1A fortran code to generate the initial conditions is available at:
http://www.rap.ucar.edu/∼gthompsn/workshop2008/ or from the first author.
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prescribed constant with height within the first 10 km and increases linearly above to
U=40 m s−1 at the model top.

The idealised bell-shaped topography has the form

h(x)=

{
h0
16

[
1+cos

(
π x−x0

4a0

)]4
, |x−x0|<4a0

0 , |x−x0|>4a0 ,
(2)

with h0 denoting the peak mountain height located at x0 (the middle of the computa-5

tional domain) and a0 denotes the half-width of the mountain. In the first set of ex-
periments (linear hydrostatic mountain wave, SIM 1 and SIM 2) the mountain height is
h0=800 m and the mountain half-width is a0=20 km. In the second set of experiments
(blocked-flow, SIM 3 and SIM 4) the mountain height is h0=3000 m.

The physical aerosol properties used to initialise the models are taken from obser-10

vations by Weingartner et al. (1999) and are prescribed vertically constant by means
of lognormal aerosol size distributions shown in Fig. 2. The aerosol spectra are rep-
resentative for mean remote continental winter/summer conditions in the Alps. Since
lower aerosol number densities are observed during winter than during summer the
mean winter aerosol spectrum is taken as the clean case (CC) and the mean summer15

aerosol spectrum is taken as the polluted case (PC). Each aerosol spectrum satisfies
a superposition of two lognormal size distributions of the form

dN
d lnr

=
2∑

i=1

Ni√
2π lnσi

exp

−( lnr− lnr̃i√
2lnσi

)2
 (3)

with the aerosol number densities Ni , the count median radii r̃i and the geometric
standard deviations σi specified according to Table 3. Assuming a mean aerosol den-20

sity of ρ=1.5 g cm−3 yields aerosol mass densities of 2.0 µg m−3 during summer and
0.51 µg m−3 during winter. In case models are able to discriminate different aerosol
chemical compositions we adopt the results of aerosol mass spectrometry (see Fig. 11
in Cozic et al., 2008 for details) obtained during the CLACE field campaign at the
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Jungfraujoch in Switzerland. Otherwise, aerosols are assumed to consist of ammo-
nium sulfate with 100% solubility.

3.3 Intercomparison strategy

In order to compare the sensitivities of microphysical processes in mixed-phase oro-
graphic clouds and orographic precipitation to changes in the aerosol initial conditions5

among the models the following metrics are used:
The amount of precipitation from rain, snow and graupel as well as the orographic

precipitation distribution are compared for all models after 10 h of simulation. Estimates
for the total domain precipitation (TP), the spillover factor (SP) and the drying ratio (DR)
are presented. Throughout this study, SP is defined as the leeward precipitation frac-10

tion (i.e., the ratio of leeward precipitation to total precipitation) according to Jiang and
Smith (2003). DR is defined as the ratio of horizontally integrated total precipitation flux
at the surface to the vertically integrated water vapor influx (e.g., Smith et al., 2003).
SP and DR provide integral measures for orographic precipitation and do not depend
on the choice of reference points at the topography. Both measures may be com-15

pared against observations from field campaigns, estimates from rain gauge networks
and isotopic analyses of stream water or sap water on a climatological timescale (e.g.,
Smith et al., 2005). Cloud-microphysical fields (e.g., cloud droplet number concentra-
tion, liquid water content) are compared after 10 h of simulation. Averaged values of
liquid water path (LWP) and ice water path (IWP) are compared among the models as20

a function of time. Statistics of the dynamics of the individual models are computed
for the computational domain excluding relaxation and damping zones. Furthermore,
microphysical conversion rates for collision/coalescence, aggregation and riming are
analysed and compared to get a better insight into aerosol-cloud-precipitation interac-
tions on a process based level.25
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4 Results

4.1 Simulations of orographic precipitation without flow blocking

For the first set of simulations a 2-D moist unblocked flow over a mountain is considered
(i.e., a setup where linear theory predicts a hydrostatic mountain wave) for a warm case
(SIM 1 CC, SIM 1 PC) and a cold case (SIM 2 CC, SIM 2 PC) (see Table 2 for details5

on the setup).

4.1.1 Dynamics comparison

In order to show that the models are simulating the same dynamical state, the statistics
of the wind velocities and the specific humidity are compared in Fig. 3. All models are
able to simulate the hydrostatic mountain wave with an upstream region of flow decel-10

eration and a downstream region of flow acceleration (not shown). All simulations start
with a maximum specific humidity of approximately 7.3 g m−3 at the lowest model level
according to the sounding shown in Fig. 1. The maximum values of specific humidity
stay fairly constant throughout the simulations for all models except for UWNMS which
develops a slight increase in the maximum specific humidity. This increase in maximum15

specific humidity is caused by stronger evaporation processes on the upstream side of
the mountain at the levels close to the surface.

The integrated water vapor decreases over time according to the individual model’s
precipitation amount. For example, the domain integrated water vapor stays highest
in WRF throughout the whole simulation because WRF is the model with the lowest20

total precipitation rates as will be discussed later. Note that the slight differences in
the domain integrated water vapor initially originate from differences in the model sam-
pling volume. Since each model applies a different numerical setup (e.g., depth of the
Rayleigh damping layer, width of the lateral relaxation zone) the model sampling vol-
ume varies slightly among the models. The maximum and domain integrated statistics25

are obtained for the entire model domain excluding relaxation and damping zones.
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The horizontal wind speeds are prescribed at 15 m s−1 at the initial time and increase
throughout the simulation to roughly 26 m s−1 in the downdraught region on the leeward
side of the mountain after 10 h simulation. The differences in maximum horizontal wind
velocities among the models are within a range of 3 m s−1. However, in some models
these maximum wind speeds originate from a region of wave breaking between 10 km5

and 12 km and are not related to the downdraught region on the leeward side of the
mountain. In the latter region, the agreement among the models is reasonable with
maximum wind speeds of approximately 23 m s−1 in COSMO, 24 m s−1 in UWNMS and
27 m s−1 in WRF. According to Durran and Klemp (1983), one would expect that the
remaining water vapor in the model simulations would lead to a damping of the gravity10

wave amplitude and to lower horizontal wind speeds especially in the WRF simulation.
Since the opposite is the case, the differences among the models in terms of horizon-
tal wind speeds are likely caused by differences in either the numerical time integration
scheme or the dynamical setup (e.g., depth of the Rayleigh damping layer, damping
coefficients, upper model boundary condition) and not by the remaining moisture con-15

tent on the leeward side of the mountain. Nevertheless, the maximum deviations of the
mean horizontal wind velocities are below 0.5 m s−1 among the models.

The vertical wind speeds are generally in good agreement with the maximum wind
speeds increasing throughout the simulation from approximately 0.5 m s−1 after initial
spin-up to approximately 0.8–1.0 m s−1 after 10 h. The maximum spread among the20

models does not exceed 0.2 m s−1 in terms of maximum vertical velocities and is well
below 1.0 cm s−1 for the mean vertical wind velocities.

In the simulation SIM 2 CC the initial sea level temperature is decreased in compar-
ison to the simulation SIM 1 CC which leads to lower values of the maximum specific
humidity of approximately 4.7 g m−3. However, the horizontal and vertical wind veloc-25

ities change only marginally in response to the decreased specific humidity and are
comparable to the wind velocities of simulation SIM 1 CC (not shown).

In the simulations with increased aerosol number concentrations SIM 1 PC and
SIM 2 PC, respectively, the horizontal and vertical wind velocities change slightly
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due to dynamical feedbacks of aerosol-cloud-precipitation interactions (not shown) but
these differences are much smaller than the differences between the individual model
simulations and, thus, are not investigated further.

4.1.2 Clouds and precipitation comparison

Despite the reasonable agreement of the dynamical states of the model considerable5

differences exist among the models in terms of cloud structure, cloud microphysics
and precipitation. All models simulate a low-level orographic cloud attached to the up-
stream side of the mountain and an upper-level orographic wave cloud in a region of
wave breaking on the leeward side of the mountain. Figures 4 and 5 show the cloud
fields for the simulation SIM 1 CC for all models averaged over the 10 h simulation10

time. The depth of upstream low-level cloud varies among the models between ap-
proximately 3 km and 4 km after 10 h. Considerable discrepancies exist especially in
the partitioning of the liquid and the ice in the low-level orographic cloud. For example,
COSMO and UWNMS both simulate cloud layers with sustained mixed-phase condi-
tions sandwiched by a partly supercooled liquid cloud at lower levels and a pure ice15

cloud aloft. These mixed-phase cloud layers are deeper in COSMO than in UWNMS.
In contrast, in WRF the entire cloud consists of liquid with cloud water mixing ratios
up to approximately 0.6 g m−3. Due to the lack of ice in the WRF simulation, the WRF
model produces also deeper cloud water fields than the other models (Fig. 5).

The cloud droplet number concentrations are in reasonable agreement among the20

models with values on the order of 100 cm−3 and maximum values ranging from
70 cm−3 (WRF) to almost 140 cm−3 (COSMO). The higher maximum cloud droplet
number concentrations in COSMO are related to the higher vertical velocities on the
upslope side of the mountain in the COSMO simulation. The mean cloud droplet size
averaged over the 10 h simulation ranges from approximately 17 µm (COSMO) to 22 µm25

(UWNMS). Ice crystal number concentrations are on the order of roughly 100 l−1 in the
low-level cloud in all models.
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Despite the reasonable agreement in the cloud droplet number concentrations there
exists remarkable variability among the models with respect to the mass mixing ratios of
the different hydrometeor types (Fig. 5). COSMO and UWNMS both show contributions
from cloud liquid and cloud ice at lower levels but values are considerably higher in
UWNMS than in COSMO.5

The differences in the liquid to ice mass partitioning in the orographic cloud also af-
fect the development of precipitable hydrometeors. For example, WRF shows mainly
contributions from rain and snow with negligible small contributions from graupel. In
COSMO and UWNMS precipitation shows contributions from snow generated in the
upper regions of the cloud as well as graupel and rain in the lower levels of the clouds.10

These differences suggest that the contributions to rain that originate from the colli-
sion/coalescence process of clouds droplets are stronger in WRF than in COSMO and
UWNMS where contributions from frozen hydrometeors are dominant. These frozen
hydrometeors are generated aloft, start melting below the freezing level and eventually
lead to rain. Due to the diminishing role of the ice-phase in the WRF simulation, the15

collision/coalescence process is more important for the rain formation in WRF than in
the other models. Furthermore, COSMO and UWNMS produce considerable amounts
of snow from aggregation of ice crystals and graupel is produced by riming in regions of
sufficient supercooled liquid water. These differences in the precipitable hydrometeors
fields have implications for the amount and distribution of orographic precipitation as20

will be discussed later.
The upper-level wave clouds are similar among the models but cloud fields are vary-

ing regarding the ice water content and the spatial extent of the cloud. The max-
imum ice water mixing ratios agree reasonably between COSMO and UWNMS but
are slightly smaller in WRF. The horizontal cloud extent of the upper-level wave cloud25

is largest in UWNMS. These discrepancies may be attributable to the production of
smaller ice crystals and their inherent lower terminal fall velocities in UWNMS and
to the different ice aggregation efficiencies used in the models. For example, in the
COSMO simulation snow develops in the upper-level cloud whereas there is no snow
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in the WRF and UWNMS simulations in this region. However, the differences in the
upper-level cloud are not of further interest here because the contribution of this cloud
to the orographic precipitation in the models is negligible small.

Figure 6 shows the time series of liquid water path (LWP) and ice water path (IWP) in
the models averaged over the mountain slopes (i.e., the horizontal distances from –405

to 40 km) for simulation SIM 1 CC. The time series confirms that WRF is lacking ice
compared to the other models and that liquid water is dominant during the simulation.
In contrast, COSMO and UWNMS both show lower LWP but higher IWP and, thus,
sustain more ice in the low-level orographic cloud.

Figure 7 shows the cloud droplet and ice crystal number concentrations for the10

simulation with increased aerosol number concentration SIM 1 PC averaged over the
10 h simulation time. In SIM 1 PC the cloud droplet number concentrations are in-
creased in all models but the variability among the models is larger than in the simu-
lation SIM 1 CC with cloud droplet number concentrations ranging from approximately
150 cm−3 (WRF) to almost 440 cm−3 (COSMO). The mean cloud droplet size averaged15

over the 10 h simulation decreases relative to the clean case simulation SIM 1 CC in
all models. In contrast, there is only little change in the ice crystal number concentra-
tions compared to the clean case simulation SIM 1 CC. However, the result that the ice
crystal number concentrations are not much affected in the simulations may be related
to the oversimplified treatment of heterogeneous ice nucleation and in particular to the20

fact that the ice initiation is independent from the aerosol chemical properties.
The differences in the LWP and the IWP between the low aerosol simulation

SIM 1 CC and the high aerosol simulation SIM 1 PC are shown in Fig. 8. Despite
the considerable variability of the microphysical properties of the simulated orographic
cloud all models agree qualitatively on the result that on average the LWP is increased25

with increasing aerosol number concentrations but there is little quantitative agreement.
Regarding the IWP all models show slight changes throughout the 10 h simulation but
on average changes in IWP are generally small and positive for WRF but negative for
COSMO and UWNMS.

10505

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The intercomparison of precipitation is shown in Fig. 9 for the simulation SIM 1 CC.
The orographic precipitation is in good agreement in COSMO and UWNMS regarding
the peak and the shape of the precipitation distribution as well as the total precipitation
in the domain (see Table 4). In all models orographic precipitation maxima are found
on the upslope side of the mountain with slight displacements of the peaks towards5

the top of the mountain in the WRF simulation. However, the amount of peak and total
precipitation simulated by WRF is much smaller than in the other models which implies
that the precipitation regime simulated by WRF is less efficient than in both of the other
models. Furthermore, there is generally little agreement among the models on how
different hydrometeor categories contribute to the overall precipitation distribution. For10

example, precipitation at the surface originates almost entirely from rain in the WRF
simulation whereas the other models also show contributions from graupel (and snow
in the case of UWNMS). Most of the total precipitation in COSMO is made up of rain
with some but little contribution from graupel whereas in UWNMS the contribution from
graupel is much stronger. Moreover, the fallout of graupel is faster in UWNMS and15

occurs already on the upslope side of the mountain whereas in COSMO the precipita-
tion distribution of graupel is centered around the mountain peak. The reasons for the
relative shift in the precipitation from graupel may be related to the different terminal fall
velocities of graupel used in the models but may also be due to the varying strength of
the simulated ice-phase or the thresholds used to convert rimed snow flakes to grau-20

pel. However, the bottom line of the intercomparison of simulation SIM 1 is that the
presence of an ice-phase in the upper part of the low-level orographic cloud and the
sustained mixed-phase conditions lead to a more efficient precipitation regime (i.e., a
seeder-feeder cloud type) in COSMO and UWNMS with more upslope precipitation and
considerable contributions from graupel. Increasing aerosol number concentrations in25

simulation SIM 1 PC leads qualitatively to a reduction of total domain precipitation in
all models but the sensitivities vary greatly among the models. WRF depicts the high-
est sensitivity of precipitation with respect to changing aerosol mainly due to a strong
reduction in rain formation and little contributions from ice-phase hydrometeors. The
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sensitivity of the warm rain production is weaker in the case of COSMO and UWNMS.
The contribution to rain in the simulations are dominated by the melting of frozen hy-
drometeors formed aloft. However, relative to COSMO and UWNMS the rain formation
in WRF is more dependent on the warm-phase collision/coalescence process. Fur-
thermore, COSMO and UWNMS show increases in graupel which partly compensate5

for the loss caused by the reduction of rain. Hence, the high sensitivity of WRF to
changes in aerosol number may be explained by the diminishing role of the ice-phase
and the lack of graupel formation in this specific simulation. Overall, WRF shows the
highest sensitivity with a total precipitation reduction of approximately 19% compared
to the clean case simulation but also shows the smallest total precipitation amounts.10

COSMO and UWNMS both simulate much more precipitation and depict much weaker
sensitivities with respect to changes in aerosol number concentration of 11% and 1%,
respectively (see Table 4 for details). All models except UWNMS tend to simulate
higher values of SP meaning that relative to the low aerosol simulation more precipita-
tion is falling on the leeward side of the mountain in the high aerosol simulation (see15

Table 5 for details). DR tends to decrease with increasing aerosol number concentra-
tion and the relative magnitude of the changes are ranked according to the decrease
in total precipitation in the individual model simulations. Hence, relative changes in
DR are more pronounced in WRF than in COSMO whereas in UWNMS DR is virtually
unchanged (see Table 6 for details).20

4.1.3 Microphysics comparison

Comparing the microphysical processes among the models elucidates why the models
disagree on the contributions of precipitation from rain and graupel and sheds some
light on why the sensitivities with respect to aerosols are different.

Figure 10 shows the amount of liquid and ice mass density that is converted to25

precipitable hydrometeors through the microphysical processes collision/coalescence,
aggregation and riming. In Sim 1 COSMO and UWNMS both agree on the result that
riming is the dominant process that leads to precipitation in the simulation and that

10507

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the riming rates are increased if the aerosol number concentrations are increased. As
a consequence, the amount of precipitation from graupel is increased with increasing
aerosol number concentrations in both models. In contrast, in the WRF simulation the
contribution from riming and aggregation is comparable and riming is decreased if the
aerosol number concentrations are increased. Furthermore, aggregation is increased5

in the simulations with high aerosol number concentrations in COSMO and WRF but
is slightly decreased in the UWNMS simulation. Moreover, both models show a com-
parably weak contribution to precipitation from the collision/coalescence process but
indicate a decrease in the collision/coalescence if the aerosol number concentrations
are increased. Note that the values for collision/coalescence in the WRF simulations10

are missing. However, the decrease in collision/coalescence is rather subtle in the
case of UWNMS because the reduction in the cloud droplet coalescence is almost
completely offset by the accretion of cloud droplets by rain. Thus, the accretion by
rain may be an important microphysical process with a potential to reduce the overall
sensitivity of the cloud droplet collision/coalescence process in mixed-phase clouds if15

rain drops can be produced by melting.

4.2 Sensitivity studies with respect to temperature

In the second set of simulations (SIM 2 CC and SIM 2 PC) the same dynamical regime
is simulated with a colder surface temperature in the initial thermodynamical profile
(see Fig. 1 and Table 2 for details). The dynamical states of the models are only20

marginally affected by this temperature change and the inter-model comparison is sim-
ilar to the previous set of simulations. As in the previous set of simulations, all models
show on average an increase in LWP in the simulations with higher aerosol number
concentrations but only little change in the IWP.

Figure 11 shows the comparison of precipitation for the set of simulations with colder25

surface temperature SIM 2 CC and SIM 2 PC. The variability among the models in
the orographic precipitation distribution is larger than in the warm set of simulations
with little agreement regarding the shape of the precipitation distribution or the amount
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of precipitation. Total precipitation is highest in UWNMS and lowest in WRF. How-
ever, the spatial precipitation distribution is more narrow for COSMO than for the other
models which leads to the highest peak precipitation rates. Most of the precipitation
reaches the surface in form of snow and graupel and none of the models produces
any significant amount of rain. As in the previous case, there is little agreement on the5

partitioning of precipitation to snow or graupel which in turn explains the discrepancies
in the simulated precipitation distribution. These discrepancies are also reflected in the
microphysical comparison of the models (see Fig. 12). In COSMO and UWNMS ag-
gregation is the prevalent microphysical process and most of the precipitation is from
snow flakes. On the contrary, in the WRF simulation riming dominants aggregation but10

the rimed snow flakes are not converted to graupel as in the other models. Contri-
butions from the collision/coalescence process are negligible in all models. Riming is
decreased in COSMO and WRF but is slightly increased in UWNMS.

The sensitivity of orographic precipitation to changes in the aerosol number concen-
trations as simulated by the models is generally weaker than in the previous simulations15

with warmer temperatures (see Table 4 for details). In COSMO and WRF total precipi-
tation is decreased by 4% and 5%, respectively, whereas in UWNMS total precipitation
budgets are virtually unchanged (a subtle increase). COSMO and WRF both show
higher values of SP in the high aerosol simulation meaning that some of the precipita-
tion (i.e., snow in this particular case) is redistributed towards the leeward side of the20

mountain. The DR is only little affected according to the change in the precipitation
budgets of the models.

4.3 Simulations of orographic precipitation with flow blocking

In the next set of simulations (SIM 3, SIM 4) the height of the mountain is increased
while the thermodynamical initial conditions are kept constant. This generates a flow25

regime with upstream flow blocking and severe downslope winds on the leeward side
of the mountain.
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4.3.1 Dynamics comparison

Figure 13 shows a comparison of the time evolution of the specific humidity and wind
speeds in the models. Generally, the differences in maximum horizontal and vertical
wind speeds are much higher in this case than in the unblocked flow case because the
downslope winds on the leeward side of the mountain and the regions of wave break-5

ing are very turbulent. The largest differences in maximum and minimum wind speeds
occur in the regions of downslope winds on the leeward side of the mountain below
ridge height and in the zones of wave breaking aloft. The strength of the downslope
winds and the breaking waves are to a large extent controlled by the amount of precipi-
tation on the upstream side of the mountain and the water vapor budgets of the models.10

Nevertheless, the winds on the upstream side of the mountain are in relatively good
agreement and these are the ones that are important for cloud formation. All models
develop a blocked air layer on the upstream side of the mountain with a depth of ap-
proximately 2800 m. In this layer the horizontal wind speeds are decelerated to roughly
10 m s−1. The UWNMS model develops slightly stronger blocking than COSMO and15

WRF with a stagnant air layer at low levels and even slight reverse circulations. These
differences may be attributable to differences in the numerics of the model or the VST
coordinate system used in UWNMS.

4.3.2 Clouds and precipitation comparison

Similar to the previous case with unblocked flow, the cloud fields simulated by the20

models in the blocked flow case correspond qualitatively to the classical picture of a
seeder-feeder cloud system with a liquid cloud at lower levels and an ice cloud aloft.

Figure 14 shows the comparison of different hydrometeor fields in all three simula-
tions of case SIM 3 CC averaged over the 10 h simulation time. The simulated cloud is
roughly 6.5 km deep in all models but there are discrepancies in the partitioning of the25

cloud water between the liquid and the ice-phase. In COSMO most of the cloud con-
sists of supercooled liquid water down to temperatures of –20 ◦C whereas, for example,
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in UWNMS the liquid-phase is confined to levels below approximately 1 km and above
the preexisting ice crystals grow by vapor deposition on the expense of the liquid-phase
(i.e., the Bergeron-Findeisen process). Ice crystals are predominantly found between
2 km and 7 km but are rapidly aggregated to snow flakes in all models. The snow flakes
then sediment into the lower layers where they start riming to graupel which enhances5

the orographic precipitation greatly. Most of the precipitation originates from snow and
graupel with some contributions from rain that forms below the freezing level. In the
simulations SIM 4 the cloud fields are qualitatively similar to case SIM 3 (not shown)
except that the ice part of the cloud starts at much lower elevations and the contri-
butions from the liquid-phase are small. The orographic precipitation distributions are10

shown in Fig. 15 for the case with warmer temperatures (SIM 3) and in Fig. 16 for the
case with colder temperatures (SIM 4), respectively. Despite the fact the dynamical
differences in the individual model simulations are generally larger in the case with flow
blocking than in the unblocked flow case the amount of total precipitation is in better
agreement with some but overall less variability among the models. All models agree15

on the qualitative shape of the orographic precipitation distribution (Fig. 15). There is
good correspondence of the spatial distribution of rain whereas for snow and graupel
the location of the peaks vary presumably due to the different fall velocities for snow
and graupel used in the models. Furthermore, there are discrepancies regarding the
contributions from snow and graupel to the total precipitation whereas there is little vari-20

ation in terms of rain. COSMO is the model with most precipitation whereas UWNMS
is the model with least precipitation. Similar results are found in the simulations SIM 4
with the distinction that contributions from rain are negligible in all models (Fig. 16).
There is a good agreement in terms of total precipitation and the result that most of the
precipitation is due to snow. Again, there is some discrepancy in the precipitation from25

graupel particles.
The sensitivity of orographic precipitation with respect to changes in aerosol number

concentration is much smaller and almost negligible for the blocked flow case in both
the warm and the cold subset of the simulations. All models show a tendency towards
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reduced total orographic precipitation but the sensitivities do not exceed 3% in any of
the simulations (see Table 4 for details). Some of the simulations show an increase of
SP in the polluted case which points to a slight redistribution of precipitation towards
the leeward side of the mountain. The DR shows only a weak signal in most of the
simulations (see Tables 5 and 6 for details.)5

4.3.3 Microphysics comparison

Figures 17 and 18 show the microphysical rates for the simulations SIM 3 and SIM 4,
respectively. Two (COSMO and WRF) out of three models suggest that riming is the
prevalent microphysical process for producing precipitation from the cloud whereas
in the UWNMS model aggregation and riming are equally important. The colli-10

sion/coalescence process contributes only little to the overall precipitation in all models.
Riming is found to decrease with increasing aerosol number concentrations in COSMO
and UWNMS but is increased in WRF. Furthermore, all models show an increase in ag-
gregation with increasing aerosol concentrations. The collision/coalescence process is
only little affected because the decrease in the coalescence of cloud droplets is largely15

compensated by the accretion of cloud droplets by rain that is produced from melt-
ing ice hydrometeors. Similar results are found in the set of simulations with colder
temperature SIM 4. However, in this case all models suggest that aggregation is the
dominant microphysical process followed by riming and a negligible small role of colli-
sion/coalescence.20

5 Discussion and conclusions

A model intercomparison of aerosol-cloud-precipitation interactions in stratiform oro-
graphic mixed-phase clouds is conducted and the sensitivities of orographic precipita-
tion to changes in aerosol number concentrations are analyzed and compared among
the models. Furthermore, the sensitivity of microphysical processes such as colli-25

sion/coalescence, aggregation and riming is evaluated. Idealized simulations of flow
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past topography are performed for two different flow regimes namely a linear moun-
tain wave flow regime without significant orographic flow blocking and a flow regime
with strong orographic flow blocking. Additional sensitivity studies are conducted with
respect to temperature and the mode of heterogeneous ice nucleation. The simula-
tions are initialized with aerosol size distributions typical and representative for remote-5

continental conditions in the Swiss Alpine region.
The simulated cloud types resemble orographic seeder-feeder clouds with sustained

mixed-phase conditions sandwiched between layers of partly supercooled liquid below
and layers of ice aloft. These types of clouds are a well known prototype of orographic
clouds at mid-latitudes and are climatologically important for explaining observed oro-10

graphic precipitation amounts especially over small mountain ranges (e.g., Browning
et al., 1974; Smith, 1989).

The results of the model intercomparison suggest that the sensitivity of orographic
precipitation to changes in the aerosol number concentrations varies from case to case
but also from model to model. While a case dependent sensitivity of aerosol-cloud-15

precipitation is generally found in many other studies (e.g., Levin and Cotton, 2009;
Khain, 2009) the variability among different models and microphysical approaches for
the same case is less recognized. In most of the simulations a decrease of orographic
precipitation with increasing aerosol number concentrations is found whereas in some
others orographic precipitation is either only marginally affected or slightly increased.20

Thus, neither a precipitation decrease nor a precipitation increase is found robustly in
all simulations. Qualitative robust results can only be found for a small subset of the
simulations. However, even for this small subset of simulations quantitative estimates
of the aerosol sensitivity of precipitation varies greatly among the models.

Estimates for the indirect aerosol effect on orographic precipitation range from –19%25

to 0% depending on the simulated case and the model. Nevertheless, a tendency to-
wards smaller precipitation sensitivities is found for the cases with high mountain range
or low temperatures. Orographic precipitation is found most susceptible to changes
in aerosol number concentrations in the case of a small mountain range and warm
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temperatures. These sensitivities can be understood qualitatively from two different
points of view. From a microphysical point of view it may be argued that both factors,
increasing the height of the mountain range or decreasing the ambient temperature,
strengthen the role of the ice-phase in the simulations thereby reducing the aerosol
susceptibility of the cloud. On the other hand, similar sensitivities are also found in5

simulations of warm-phase orographic clouds with no contribution from the ice-phase
(Muhlbauer and Lohmann, 2008). Thus, from a dynamical point of view, orographic
clouds are found less susceptible to aerosol modifications in the blocked flow case be-
cause air parcels in these clouds do not obey the classical picture of a flow over the
mountain that constrains the available time for the initiation of precipitation. Hence, one10

may expect an indirect aerosol effect on precipitation to be less pronounced or even
inverted in regions with high terrain (e.g., the Alps or Rocky Mountains) or in regions
where ice-phase microphysics play climatologically an important role for orographic
precipitation.

There is an agreement among the models that on average the LWP is increased15

with increasing aerosol number concentrations. In some cases an increase in the IWP
is also found but this feature is less robust and not supported by all models. Most of
the simulations are not particularly sensitive to the aerosol modification because the
cloud droplet collision/coalescence process is overall only slightly affected in the sim-
ulated orographic clouds. The reasons are twofold: firstly, in the simulated cases with20

cold temperatures the contributions from the coalescence process to the orographic
precipitation are found to be negligible small and, thus, changes in this particular mi-
crophysical process are not important for the precipitation formation. Secondly, in the
simulated cases with warm temperatures rain drops are mainly produced by melting
of ice hydrometeors generated aloft and not by the coalescence of the cloud droplets.25

Thus, the efficient production of rain drops in mixed-phase clouds does not hinge on
the cloud droplet coalescence process alone. These rain drops fall then through layers
of higher liquid water content and collect cloud droplets efficiently. It is noted that small
or inverse sensitivities of precipitation to changes in aerosol number concentrations are
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also reported in cases where rain drops are generated in a cloud efficiently by other
means such as giant CCN (e.g., Feingold et al., 1999; Rosenfeld et al., 2002) or due to
vertically decreasing aerosol number concentrations that support rain drop formation
through coalescence in the upper regions of a cloud (e.g., Muhlbauer and Lohmann,
2008). These mechanisms can be operational and effective even without any aid from5

the ice-phase.
The simulations conducted in this study also suggest that a decrease in the colli-

sion/coalescence process does not necessarily imply a decrease in precipitation. The
reason is that riming can be increased if more cloud liquid water is available for collec-
tion in the case of high aerosol number concentrations. It is emphasised that riming10

is found to decrease as well as increase in the simulations depending on the case
and the model. Hence, there is no robust conclusion whether riming is increased or
decreased with increasing aerosol number concentrations in the simulated orographic
clouds. Furthermore, a simulated decrease is riming does not imply a decrease in
precipitation because the decrease in riming can be compensated by an increase in15

aggregation.
The disagreement among the models regarding the sensitivity of microphysical pro-

cesses and the eventual macrophysical outcome in terms of precipitation is linked to
the uncertainties in representing microphysical processes especially in mixed-phase
and ice-clouds. Some of the persistent discrepancies found in all simulations of the20

model intercomparison are related to the partitioning of cloud water between the liquid
and the ice-phase, the simulation of sustained mixed-phase conditions and the par-
titioning of precipitation between snow and graupel. Some of these problems reflect
the incomplete and limited physical understanding of cloud microphysics (e.g., initia-
tion of ice in mixed-phase clouds by heterogeneous ice nucleation), the fact that many25

microphysical processes are not very well constrained by observations (e.g., uncer-
tainty of the ice aggregation efficiencies) and the artificial treatment of microphysical
processes in numerical models (e.g., the treatment of rimed snow and the conversion
to graupel). The latter problem might be mitigated by avoiding artificial hydrometeor
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categorisation in cloud-microphysics schemes as suggested by Hashino and Tripoli
(2007) or Morrison and Grabowski (2008). However, more observations from labo-
ratory studies and field campaigns are needed to improve the current understanding
of aerosol-cloud-precipitation interactions and to better constrain cloud-microphysical
parameterisations.5
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Zubler, E. M., Lohmann, U., Lüthi, D., Muhlbauer, A., and Schär, C.: A glaciation indirect aerosol10

effect in a statistical analysis of modeled mixed-phase orographic precipitation over the Alps,
J. Atmos. Sci., submitted, 2010. 10493

10524

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Details of the microphysical parameterisations used in the models.

COSMO WRF UWNMS

Collision efficiencies Reisin et al. (2001) Hall (1980) Reisin et al. (2001)
Aggregation efficiencies Seifert and Beheng (2006) Pitter (1977) Hallgren and Hosler (1960)
Riming efficiencies Lew et al. (1986), Mitchell (1990) Lin et al. (1983) Hashino and Tripoli (2007)
Terminal fall speeds ice Locatelli and Hobbs (1974) Bohm (1992)
Terminal fall speeds snow Locatelli and Hobbs (1974) Passarelli and Srivastava (1979) Bohm (1992)
Terminal fall speeds graupel Seifert and Beheng (2006) Bohm (1992)
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Table 2. Parameter specifications for the idealised set of simulations. All simulations are con-
ducted with a sea-level pressure pSL=1000 hPa, a dry Brunt-Väisälä frequency of Nd=0.011 s−1

and a mountain half-width of a0=20 km. Aerosol conditions are prescribed according to a clean
case (CC) or a polluted case (PC).

Simulation h (m) TSL (K) aerosol

SIM 1 CC 800 280 CC
SIM 1 PC 800 280 PC
SIM 2 CC 800 273 CC
SIM 2 PC 800 273 PC
SIM 3 CC 3000 280 CC
SIM 3 PC 3000 280 PC
SIM 4 CC 3000 273 CC
SIM 4 PC 3000 273 PC
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Table 3. Parameters of the lognormal aerosol size distributions.

Mode N r σ M
(cm−3) (µm) (µg m−3)

Clean case Ait. 310 0.022 2.13 0.07
Acc. 40 0.070 1.61 0.44

Polluted case Ait. 530 0.022 2.13 0.26
Acc. 260 0.070 1.61 1.74
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Table 4. Inter-model comparison of the total precipitation (mm) for the set of simulations in
Table 2 after 10 h simulation.

Simulation COSMO WRF UWNMS

SIM 1 CC 459 104 466
SIM 1 PC 409 84 461
SIM 2 CC 409 143 430
SIM 2 PC 393 136 432
SIM 3 CC 2168 2124 2047
SIM 3 PC 2111 2062 2029
SIM 4 CC 1438 1502 1353
SIM 4 PC 1427 1495 1352
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Table 5. Inter-model comparison of the spillover for the set of simulations in Table 2. The
spillover is defined as the ratio of leeward precipitation to total precipitation.

Simulation COSMO WRF UWNMS

SIM 1 CC 0.30 0.53 0.32
SIM 1 PC 0.32 0.57 0.31
SIM 2 CC 0.24 0.63 0.31
SIM 2 PC 0.27 0.66 0.30
SIM 3 CC 0.19 0.23 0.16
SIM 3 PC 0.23 0.23 0.18
SIM 4 CC 0.12 0.11 0.13
SIM 4 PC 0.13 0.13 0.13
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Table 6. Inter-model comparison of the drying ratio for the set of simulations in Table 2. The
drying ratio is defined as the ratio of horizontally integrated total precipitation flux at the surface
to the vertically integrated water vapor influx.

Simulation COSMO WRF UWNMS

SIM 1 CC 0.12 0.06 0.13
SIM 1 PC 0.11 0.04 0.13
SIM 2 CC 0.18 0.12 0.19
SIM 2 PC 0.18 0.11 0.19
SIM 3 CC 0.59 0.62 0.54
SIM 3 PC 0.58 0.60 0.53
SIM 4 CC 0.68 0.78 0.60
SIM 4 PC 0.68 0.79 0.60
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Fig. 1. Atmospheric soundings for the idealised 2-D simulations showing the temperature (red)
and dew-point temperature (blue) in a skewT-logp diagram. The warm sounding (solid) is used
in simulations SIM 1 and SIM 3 whereas the cold sounding (dashed) is used in simulations
SIM 2 and SIM 4 (see Table 2 for details on the setup).
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Fig. 2. Aerosol initial conditions for the idealised 2-D simulations. The number density dis-
tribution is based a mean aerosol spectrum for winter and summer conditions, respectively.
The winter aerosol spectrum is taken as the clean case (CC, solid) and the summer aerosol
spectrum is taken as the polluted case (PC, dashed).
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Fig. 3. Time evolution of water vapor, horizontal and vertical wind velocities for simulation
SIM 1 CC. The upper panel shows maximum values of specific humidity Qmax (a), horizontal
wind speeds Umax (b) and vertical wind speeds Wmax (c). The lower panel shows domain
integrated water vapor Qint (d), domain average horizontal wind speeds <U > (e) and domain
averaged vertical wind speeds <W > (f). The individual models shown are COSMO (black),
WRF (blue) and UWNMS (red).
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Fig. 4. Vertical cross section of number concentrations of cloud droplets (QNC) and ice crystals
(QNI) for COSMO, WRF and UWNMS averaged over 10 h simulation. The contour lines show
the temperature (red) and the potential temperature (gray). Units are cm−3 for cloud droplets
and l−1 for ice crystals, ◦C for temperature and K for potential temperature. Only part of the
computational domain is shown.
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Fig. 5. Same as Fig. 4 but for the mass mixing ratios (units g kg−1) of cloud water (QC), ice
(QI), rain (QR), snow (QS) and graupel (QG).
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Fig. 5. Continued.
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Fig. 6. Time series of liquid water path (LWP) in panel (a) and ice water path (IWP) in panel
(b) averaged over the mountain slopes (horizontal distances from –40 to 40 km). Note that
LWP includes liquid water from cloud droplets and rain and IWP includes ice crystals, snow
and graupel.
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Fig. 7. Same as Fig. 4 but for the polluted case simulation SIM 1 PC.
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Fig. 8. Same as Fig. 6 but for the difference between the polluted case and the clean case in
simulation SIM 1. The thin black dashed line indicates the zero line.
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Fig. 9. Orographic precipitation distribution for the simulations SIM 1 CC (solid) and SIM 1 PC
(dashed) for rain (a), snow (b), graupel (c) and total precipitation (d) after 10 h simulation time.
The individual models shown are COSMO (black), WRF (blue) and UWNMS (red).

10540

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

coa agg rim
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−5

microphysical process

co
nv

er
te

d
 m

as
s 

d
en

si
ty

 [k
g 

m
−

3 ]

COSMO

coa agg rim
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−5

microphysical process

co
nv

er
te

d
 m

as
s 

d
en

si
ty

 [k
g 

m
−

3 ]

WRF

coa agg rim
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−5

microphysical process

co
nv

er
te

d
 m

as
s 

d
en

si
ty

 [k
g 

m
−

3 ]

UWNMS

(a) (b) (c)

Fig. 10. Mass density of cloud liquid and ice converted to precipitable hydrometeors by col-
lision/coalescence (coa), aggregation (agg) and riming (rim) for the clean case simulation
SIM 1 CC (blue) and the polluted case simulation SIM 1 PC (red) in COSMO (a), WRF (b)
and UWNMS (c). All values are integrated over the 10 h simulation time. Values for colli-
sion/coalescence in the WRF simulations are missing.
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Fig. 11. Same as Fig. 9 but for the clean case simulation SIM 2 CC (solid) and the polluted
case simulation SIM 2 PC (dashed), respectively.
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Fig. 12. Same as Fig. 10 but for the clean case simulation SIM 2 CC (blue) and the polluted
case simulation SIM 2 PC (red), respectively.
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Fig. 13. Same as Fig. 3 but for simulation SIM 3 CC.

10544

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/10487/2010/acpd-10-10487-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 10487–10550, 2010

Intercomparison of
aersol-cloud

interactions in
orographic clouds

A. Muhlbauer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 14. Same as figure 5 but for simulation SIM 3 CC.
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Fig. 14. Continued.
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Fig. 15. Same as Fig. 9 but for simulation SIM 3 CC (solid) and SIM 3 PC (dashed).
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Fig. 16. Same as Fig. 9 but for simulation SIM 4 CC (solid) and SIM 4 PC (dashed).
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Fig. 17. Same as Fig. 10 but for the simulations SIM 3 CC (blue) and SIM 3 PC (red).
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Fig. 18. Same as Fig. 10 but for the simulations SIM 4 CC (blue) and SIM 4 PC (red).
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